Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.394
1.
Int J Biol Sci ; 20(7): 2403-2421, 2024.
Article En | MEDLINE | ID: mdl-38725848

Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.


Breast Neoplasms , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Phosphorylation , Cell Line, Tumor , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Proto-Oncogene Proteins , MAP Kinase Kinase Kinases
2.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38613499

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Antineoplastic Agents , Protein Kinase Inhibitors , Pyrimidines , Humans , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/chemistry , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Cell Line, Tumor , Drug Discovery , Apoptosis/drug effects , Female , Mice, Nude , Drug Screening Assays, Antitumor , Molecular Structure , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
3.
Viruses ; 16(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675964

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Antiviral Agents , Rotavirus Infections , Rotavirus , Virus Replication , Rotavirus/drug effects , Rotavirus/physiology , Animals , Mice , Rotavirus Infections/drug therapy , Rotavirus Infections/virology , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation , Mice, Inbred BALB C , Cell Line , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects
4.
Redox Biol ; 72: 103149, 2024 Jun.
Article En | MEDLINE | ID: mdl-38581859

Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.


Arachidonate 15-Lipoxygenase , Cholesterol , Homeostasis , Lipid Peroxidation , Macrophages , Sterol Regulatory Element Binding Protein 2 , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Humans , Cholesterol/metabolism , Macrophages/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Gene Expression Regulation
5.
J Cancer Res Ther ; 20(2): 570-577, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38687926

OBJECTIVE: This study aimed to investigate BVD-523 (ulixertinib), an adenosine triphosphate (ATP)-dependent extracellular signal-regulated kinases 1/2 inhibitor, for its antitumor potential in thyroid cancer. MATERIALS AND METHODS: Ten thyroid cancer cell lines known to carry mitogen-activated protein kinase (MAPK)-activated mutations, including v-Raf murine sarcoma viral oncogene homolog B (BRAF) and rat sarcoma virus (RAS) mutations, were examined. Cells were exposed to a 10-fold concentration gradient ranging from 0 to 3000 nM for 5 days. The half-inhibitory concentration was determined using the Cell Counting Kit-8 assay. Following BVD-523 treatment, cell cycle analysis was conducted using flow cytometry. In addition, the impact of BVD-523 on extracellular signal-regulated kinase (ERK)- dependent ribosomal S6 kinase (RSK) activation and the expression of cell cycle markers were assessed through western blot analysis. RESULTS: BVD-523 significantly inhibited thyroid cancer cell proliferation and induced G1/S cell cycle arrest dose-dependently. Notably, cell lines carrying MAPK mutations, especially those with the BRAF V600E mutation, exhibited heightened sensitivity to BVD-523's antitumor effects. Furthermore, BVD-523 suppressed cyclin D1 and phosphorylated retinoblastoma protein expression, and it robustly increased p27 levels in an RSK-independent manner. CONCLUSION: This study reveals the potent antitumor activity of BVD-523 against thyroid cancer cells bearing MAPK-activating mutations, offering promise for treating aggressive forms of thyroid cancer.


Aminopyridines , Cell Proliferation , Pyrroles , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Pteridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mutation , MAP Kinase Signaling System/drug effects
6.
Biol Reprod ; 110(1): 154-168, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-37815939

Phoenixin is a neuropeptide with a well-established role in the central regulation of reproductive processes; however, knowledge regarding its role in the ovary is limited. One of the main active phoenixin isoforms is phoenixin-14, which acts through G protein-coupled receptor 173. Our research hypothesis was that phoenixin-14 is expressed in porcine corpus luteum and exerts luteotropic action by affecting the endocrine function of luteal cells through G protein-coupled receptor 173 and protein kinase signaling. Luteal cells were cultured to investigate the effect of phoenixin-14 (1-1000 nM) on endocrine function. We showed that phoenixin-14 and G protein-coupled receptor 173 are produced locally in porcine corpus luteum and their levels change during the estrous cycle. We detected phoenixin-14 immunostaining in the cytoplasm and G protein-coupled receptor 173 in the cell membrane. Plasma phoenixin levels were highest during the early luteal phase. Interestingly, insulin, luteinizing hormone, progesterone, and prostaglandins decreased phoenixin-14 levels in luteal cells. Phoenixin-14 increased progesterone, estradiol, and prostaglandin E2 secretion, but decreased prostaglandin F2α, upregulated the expression of steroidogenic enzymes, and downregulated receptors for luteinizing hormone and prostaglandin. Also, phoenixin-14 increased the expression of G protein-coupled receptor 173 and the phosphorylation of extracellular signal-regulated kinase 1/2, protein kinase B, inhibited the phosphorylation of protein kinase A, and had mixed effect on AMP-activated protein kinase alpha and protein kinase C. G protein-coupled receptor 173 and extracellular signal-regulated kinase 1/2 mediated the effect of phoenixin-14 on endocrine function of luteal cells. Our results suggest that phoenixin is produced by porcine luteal cells and can be a new regulator of their function.


Luteal Cells , Female , Animals , Swine , Luteal Cells/metabolism , Progesterone/pharmacology , Corpus Luteum/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Luteinizing Hormone/pharmacology , Luteinizing Hormone/metabolism , Receptors, G-Protein-Coupled/metabolism
7.
Am J Physiol Heart Circ Physiol ; 326(1): H180-H189, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37999644

During select pathological conditions, the heart can hypertrophy and remodel in either a dilated or concentric ventricular geometry, which is associated with lengthening or widening of cardiomyocytes, respectively. The mitogen-activated protein kinase kinase 1 (MEK1) and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway has been implicated in these differential types of growth such that cardiac overexpression of activated MEK1 causes profound concentric hypertrophy and cardiomyocyte thickening, while genetic ablation of the genes encoding ERK1/2 in the mouse heart causes dilation and cardiomyocyte lengthening. However, the mechanisms by which this kinase signaling pathway controls cardiomyocyte directional growth as well as its downstream effectors are poorly understood. To investigate this, we conducted an unbiased phosphoproteomic screen in cultured neonatal rat ventricular myocytes treated with an activated MEK1 adenovirus, the MEK1 inhibitor U0126, or an eGFP adenovirus control. Bioinformatic analysis identified cytoskeletal-related proteins as the largest subset of differentially phosphorylated proteins. Phos-tag and traditional Western blotting were performed to confirm that many cytoskeletal proteins displayed changes in phosphorylation with manipulations in MEK1-ERK1/2 signaling. From this, we hypothesized that the actin cytoskeleton would be changed in vivo in the mouse heart. Indeed, we found that activated MEK1 transgenic mice and gene-deleted mice lacking ERK1/2 protein had enhanced non-sarcomeric actin expression in cardiomyocytes compared with wild-type control hearts. Consistent with these results, cytoplasmic ß- and γ-actin were increased at the subcortical intracellular regions of adult cardiomyocytes. Together, these data suggest that MEK1-ERK1/2 signaling influences the non-sarcomeric cytoskeletal actin network, which may be important for facilitating the growth of cardiomyocytes in length and/or width.NEW & NOTEWORTHY Here, we performed an unbiased analysis of the total phosphoproteome downstream of MEK1-ERK1/2 kinase signaling in cardiomyocytes. Pathway analysis suggested that proteins of the non-sarcomeric cytoskeleton were the most differentially affected. We showed that cytoplasmic ß-actin and γ-actin isoforms, regulated by MEK1-ERK1/2, are localized to the subcortical space at both lateral membranes and intercalated discs of adult cardiomyocytes suggesting how MEK1-ERK1/2 signaling might underlie directional growth of adult cardiomyocytes.


Actins , Myocytes, Cardiac , Mice , Rats , Animals , Myocytes, Cardiac/metabolism , Actins/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Signal Transduction , Extracellular Signal-Regulated MAP Kinases/metabolism , Cytoskeleton/metabolism , Mice, Transgenic , Hypertrophy/metabolism , Hypertrophy/pathology , Cytoskeletal Proteins/metabolism , Cells, Cultured
8.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103643

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Adipokines , Gene Expression Profiling , Inflammation , Lipopolysaccharides , Macrophages , Phosphoproteins , Proteomics , Animals , Mice , Adipokines/deficiency , Adipokines/genetics , Adipokines/metabolism , Bone Marrow Cells/cytology , Cytokines/metabolism , Glycolysis , Hypothermia/complications , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lactic Acid/biosynthesis , Lipopolysaccharides/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism
9.
Sci Rep ; 13(1): 22485, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110485

This study aimed to evaluate the regulatory effect and molecular mechanism of long noncoding RNA small nucleolus RNA host gene 8 (LncRNA SNHG8) in the migration and angiogenesis of primary human umbilical vein endothelial cells (pHUVECs) under high-glucose (HG) conditions. The HG-induced endothelial injury model was established in vitro.The cell model of silencing SNHG8, overexpressing SNHG8, and silencing TRPM7 was established by transfecting SNHG8-siRNA, SNHG8 plasmid and TRPM7-siRNA into cells with liposomes.The SNHG8 level was determined through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of transient receptor potential melastatin 7 (TRPM7), endothelial nitric oxide synthase (eNOS), p-eNOS, extracellular signal-regulated kinase 1/2(ERK1/2), and p-ERK1/2 were assessed through western blot. Nitric oxide (NO) levels were measured with DAF-FM. pHUVEC migration was examined through wound healing and Transwell assay, and pHUVEC angiogenesis was observed through a tube formation assay. Results showed that HG promoted the expression of lncRNA SNHG8 and TRPM7 and decreased the ratio of p-eNOS/eNOS and p-ERK1/2/ERK1/2 in pHUVECs . NO production, migration , and angiogenesis were inhibited in pHUVECs under HG conditions. Silencing lncRNA SNHG8 and TRPM7 could significantly reverse the HG-induced decrease in eNOS activation, NO production , migration, and angiogenesis . SNHG8 and U0126 (ERK pathway inhibitor) overexpression enhanced the HG effects, whereas using U0126 did not affect the TRPM7 expression. In conclusion, lncRNA SNHG8 participates in HG-induced endothelial cell injury and likely regulates NO production, migration, and angiogenesis of pHUVECs via the TRPM7/ERK1/2 signaling axis.


RNA, Long Noncoding , TRPM Cation Channels , Humans , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Long Noncoding/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Angiogenesis , RNA, Small Interfering/metabolism , Glucose/pharmacology , Glucose/metabolism , Protein Serine-Threonine Kinases/metabolism
10.
J Hypertens ; 41(11): 1831-1843, 2023 11 01.
Article En | MEDLINE | ID: mdl-37682076

BACKGROUND: Kidney angiotensin (Ang) II is produced mainly from liver-derived, glomerular-filtered angiotensinogen (AGT). Podocyte injury has been reported to increase the kidney Ang II content and induce Na + retention depending on the function of megalin, a proximal tubular endocytosis receptor. However, how megalin regulates the renal content and action of Ang II remains elusive. METHODS: We used a mass spectrometry-based, parallel reaction-monitoring assay to quantitate Ang II in plasma, urine, and kidney homogenate of kidney-specific conditional megalin knockout (MegKO) and control (Ctl) mice. We also evaluated the pathophysiological changes in both mouse genotypes under the basal condition and under the condition of increased glomerular filtration of AGT induced by administration of recombinant mouse AGT (rec-mAGT). RESULTS: Under the basal condition, plasma and kidney Ang II levels were comparable in the two mouse groups. Ang II was detected abundantly in fresh spot urine in conditional MegKO mice. Megalin was also found to mediate the uptake of intravenously administered fluorescent Ang II by PTECs. Administration of rec-mAGT increased kidney Ang II, exerted renal extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, activated proximal tubular Na + -H + exchanger 3 (NHE3), and decreased urinary Na + excretion in Ctl mice, whereas these changes were suppressed but urinary Ang II was increased in conditional MegKO mice. CONCLUSION: Increased glomerular filtration of AGT is likely to augment Ang II production in the proximal tubular lumen. Thus, megalin-dependent Ang II uptake should be involved in the ERK1/2 signaling that activates proximal tubular NHE3 in vivo , thereby causing Na + retention.


Angiotensin II , Angiotensinogen , Animals , Mice , Angiotensin II/pharmacology , Angiotensinogen/genetics , Angiotensinogen/metabolism , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism
11.
Am J Pathol ; 193(12): 1936-1952, 2023 12.
Article En | MEDLINE | ID: mdl-37673330

Renal fibrosis is a pathologic process that leads to irreversible renal failure without effective treatment. Epithelial-to-mesenchymal transition (EMT) plays a key role in this process. The current study found that aberrant expression of IL-11 is critically involved in tubular EMT. IL-11 and its receptor subunit alpha-1 (IL-11Rα1) were significantly induced in renal tubular epithelial cells (RTECs) in unilateral ureteral obstruction (UUO) kidneys, co-localized with transforming growth factor-ß1. IL-11 knockdown ameliorated UUO-induced renal fibrosis in vivo and transforming growth factor-ß1-induced EMT in vitro. IL-11 intervention directly induced the transdifferentiation of RTECs to the mesenchymal phenotype and increased the synthesis of profibrotic mediators. The EMT response induced by IL-11 was dependent on the sequential activation of STAT3 and extracellular signal-regulated kinase 1/2 signaling pathways and the up-regulation of metadherin in RTECs. Micheliolide (MCL) competitively inhibited the binding of IL-11 with IL-11Rα1, suppressing the activation of STAT3 and extracellular signal-regulated kinase 1/2-metadherin pathways, ultimately inhibiting renal tubular EMT and interstitial fibrosis induced by IL-11. In addition, treatment with dimethylaminomicheliolide, a pro-drug of MCL for in vivo use, significantly ameliorated renal fibrosis exacerbated by IL-11 in the UUO model. These findings suggest that IL-11 is a promising target in renal fibrosis and that MCL/dimethylaminomicheliolide exerts its antifibrotic effect by suppressing IL-11/IL-11Rα1 interaction and blocking its downstream effects.


Epithelial-Mesenchymal Transition , Kidney Diseases , Ureteral Obstruction , Epithelial-Mesenchymal Transition/drug effects , Fibrosis , Interleukin-11/metabolism , Interleukin-11/pharmacology , Interleukin-11/therapeutic use , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/pharmacology , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Animals , Mice
12.
J Zhejiang Univ Sci B ; 24(8): 682-697, 2023 Aug 15.
Article En, Zh | MEDLINE | ID: mdl-37551555

Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease. Anti-fibrosis treatment is a significant therapy for heart disease, but there is still no thorough understanding of fibrotic mechanisms. This study was carried out to ascertain the functions of cytokine receptor-like factor 1 (CRLF1) in cardiac fibrosis and clarify its regulatory mechanisms. We found that CRLF1 was expressed predominantly in cardiac fibroblasts. Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction, but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-|ß1 (TGF|-|ß1). Gain- and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts (NMCFs) with or without TGF-|ß1 stimulation. CRLF1 overexpression increased cell viability, collagen production, cell proliferation capacity, and myofibroblast transformation of NMCFs with or without TGF|-|ß1 stimulation, while silencing of CRLF1 had the opposite effects. An inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and different inhibitors of TGF-|ß1 signaling cascades, comprising mothers against decapentaplegic homolog (SMAD)|-dependent and SMAD-independent pathways, were applied to investigate the mechanisms involved. CRLF1 exerted its functions by activating the ERK1/2 signaling pathway. Furthermore, the SMAD-dependent pathway, not the SMAD-independent pathway, was responsible for CRLF1 up-regulation in NMCFs treated with TGF-|ß1. In summary, activation of the TGF-|ß1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression. CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway. CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.


MAP Kinase Signaling System , Myocardial Infarction , Receptors, Cytokine , Animals , Humans , Mice , Disease Models, Animal , Fibroblasts/metabolism , Fibrosis , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Infarction/metabolism , Receptors, Cytokine/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology
13.
Int Arch Allergy Immunol ; 184(9): 893-902, 2023.
Article En | MEDLINE | ID: mdl-37552963

INTRODUCTION: Eotaxin-2 and -3 of the C-C chemokine subfamily function as potent chemoattractant factors for eosinophil recruitment and various immune responses in allergic and inflammatory airway diseases. Mucin 5AC (MUC5AC), a major gel-forming secretory mucin, is overexpressed in airway inflammation. However, the association between mucin secretion and eotaxin-2/3 expression in the upper and lower airway epithelial cells has not been fully elucidated. Therefore, in this study, we investigated the effects of eotaxin-2/3 on MUC5AC expression and its potential signaling mediators. METHODS: We analyzed the effects of eotaxin-2 and -3 on NCI-H292 human airway epithelial cells and primary human nasal epithelial cells (HNEpCs) via reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Along with immunoblot analyses with specific inhibitors and small interfering RNA (siRNA), we explored the signaling pathway involved in MUC5AC expression following eotaxin-2/3 treatment. RESULTS: In HCI-H292 cells, eotaxin-2/3 activated the mRNA expression and protein production of MUC5AC. A specific inhibitor of C-C motif chemokine receptor 3 (CCR3), SB328437, suppressed eotaxin-2/3-induced MUC5AC expression at both the mRNA and protein levels. Eotaxin-2/3 induced the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and p38, whereas pretreatment with a CCR3 inhibitor significantly attenuated this effect. Induction of MUC5AC expression with eotaxin-2/3 was decreased by U0126 and SB203580, specific inhibitors of ERK1/2 and p38 mitogen-activated protein kinase (MAPK), respectively. In addition, cell transfection with ERK1/2 and p38 siRNAs inhibited eotaxin-2/3-induced MUC5AC expression. Moreover, specific inhibitors (SB328437, U0126, and SB203580) attenuated eotaxin-2/3-induced MUC5AC expression in HNEpCs. CONCLUSION: Our results imply that CCR3-mediated ERK1/2 and p38 MAPK are involved in the signal transduction of eotaxin-2/3-induced MUC5AC overexpression.


Mucin 5AC , p38 Mitogen-Activated Protein Kinases , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Cell Line , Mucin 5AC/genetics , Mucin 5AC/metabolism , Chemokine CCL24/metabolism , Chemokine CCL24/pharmacology , Chemokine CCL26/metabolism , Signal Transduction , Epithelial Cells/metabolism , Receptors, Chemokine/metabolism , RNA, Messenger/metabolism
14.
Eur J Pharmacol ; 957: 175945, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37541376

AKT and ERK 1/2 play a pivotal role in cancer cell survival, proliferation, migration, and angiogenesis. Therefore, AKT and ERK 1/2 are considered crucial targets for cancer intervention. In this study, we envisaged the role of AKT and ERK signaling in apoptosis regulation in presence of compound 4h, a novel synthetic derivative of quinoxalinone substituted spiropyrrolizines exhibiting substantial antiproliferative activity in various cancer cell lines. Structurally 4h is a spiropyrrolizine derivative. Molecular docking analysis revealed that compound 4h shows strong binding affinity with AKT-1 (-9.5 kcal/mol) and ERK2 (-9.0 kcal/mol) via binding at allosteric sites of AKT and active site of ERK2. The implications of 4h binding with these two survival kinases resulted in the obstruction for ATP binding, hence, hampering their phosphorylation dependent activation. We demonstrate that 4h mediated apoptotic induction via disruption in the mitochondrial membrane potential of MCF-7 and HCT-116 cells and 4h-mediated inhibition of survival pathways occurred in a wild type PTEN background and is diminished in PTEN-/- cells. In 4T1 mammary carcinoma model, 4h exhibited pronounced reduction in the tumor size and tumor volume at significantly low doses. Besides, 4h reached the highest plasma concentration of 5.8 µM within a period of 1 h in mice model intraperitoneally. Furthermore, 4h showed acceptable clearance with an adequate elimination half-life and satisfactory pharmacokinetic behaviour, thus proclaiming as a potential lead molecule against breast and colorectal cancer by specifically inhibiting simultaneously AKT and ERK1/2 kinases.


Breast Neoplasms , Colorectal Neoplasms , Molecular Docking Simulation , Animals , Mice , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Membrane Potential, Mitochondrial/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrroles/pharmacology , Quinoxalines/pharmacology , Humans
15.
Nat Commun ; 14(1): 4808, 2023 08 09.
Article En | MEDLINE | ID: mdl-37558722

Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust ßarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced ßarr-coupling compared to CXCR7. These two receptors induce distinct ßarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for ßarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.


Receptors, CXCR , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , GTP-Binding Proteins , Mitogen-Activated Protein Kinase 3/metabolism , Chemokine CXCL12/metabolism
16.
J Biol Chem ; 299(9): 105072, 2023 09.
Article En | MEDLINE | ID: mdl-37474104

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Arginine , Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Phosphorylation , Arginine/metabolism , Humans , Animals , Mice , Cell Line , HEK293 Cells , Enzyme Activation/genetics , Mutation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Structure, Tertiary , Models, Molecular , Crystallization , Amino Acid Sequence
17.
Cell Death Dis ; 14(7): 483, 2023 07 31.
Article En | MEDLINE | ID: mdl-37524688

Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.


Cardiomegaly , Heart Failure , Mice , Animals , Mitogen-Activated Protein Kinase 3/metabolism , Cardiomegaly/metabolism , Heart Failure/metabolism , Signal Transduction/physiology , Myocytes, Cardiac/metabolism , Phenylephrine/metabolism , Phenylephrine/pharmacology , Mice, Inbred C57BL , Disease Models, Animal
18.
J Vet Med Sci ; 85(9): 977-984, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37495516

Melanoma is a highly aggressive and metastatic cancer occurring in both humans and dogs. Canine melanoma accounts for a significant proportion of neoplastic diseases in dogs, and despite standard treatments, overall survival rates remain low. Protein phosphatase 6 (PP6), an evolutionarily conserved serine/threonine protein phosphatase, regulates various biological processes. Additionally, the loss of PP6 function reportedly leads to the development of melanoma in humans. However, there are no reports regarding the role of PP6 in canine cancer cells. We, therefore, conducted a study investigating the role of PP6 in canine melanoma by using four canine melanoma cell lines: CMec1, CMM, KMeC and LMeC. PP6 knockdown increased phosphorylation levels of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) but not Akt. Furthermore, PP6 knockdown decreased sensitivity to trametinib, a MEK inhibitor, but did not alter sensitivity to Akt inhibitor. These findings suggest that PP6 may function as a tumor suppressor in canine melanoma and modulate the response to trametinib treatment. Understanding the role of PP6 in canine melanoma could lead to the development of more effective treatment strategies for this aggressive disease.


Dog Diseases , Melanoma , Animals , Dogs , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/pharmacology , MAP Kinase Signaling System , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/veterinary , Cell Line, Tumor , Dog Diseases/drug therapy
19.
Hypertens Res ; 46(8): 1949-1960, 2023 08.
Article En | MEDLINE | ID: mdl-37258626

We detect the antihypertensive effects of maximakinin (MK) on renal hypertensive rats (RHRs) and further research the influence of MK on vascular smooth muscle cells (VSMCs) to explore its hypotensive mechanism. The effects of MK on arterial blood pressure were observed in RHRs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to detect the effect of MK on VSMC viability. Western blot and flow cytometry were used to investigate the influence of MK on intracellular Ca2+ levels and protein expression changes in VSMCs. In addition, specific protein inhibitors were applied to confirm the involvement of Ca2+-related signaling pathways induced by MK in VSMCs. MK showed a more significant antihypertensive effect than bradykinin in RHRs. MK significantly decreased intracellular Ca2+ concentrations. Furthermore, MK significantly induced the phosphorylation of signaling molecules, including extracellular signal-regulated kinase 1/2 (ERK1/2), P38, AMP-activated protein kinase (AMPK) and Akt in VSMCs. Moreover, only ERK1/2 inhibitor U0126 and AMPK inhibitor Compound C completely restored the decreased intracellular Ca2+ level induced by MK, and further research demonstrated that AMPK functioned upstream of ERK1/2 following exposure to MK. Finally, HOE-140, an inhibitor of the bradykinin B2 receptors (B2Rs), was applied to investigate the potential targets of MK in VSMCs. HOE-140 significantly blocked the AMPK/ERK1/2 pathway induced by MK, suggesting that the B2Rs might play an important role in MK-induced AMPK and ERK1/2 activation. MK significantly reduces blood pressure in RHRs. MK exerts its antihypertensive effect by activating the B2Rs and downstream AMPK/ERK1/2 pathways, leading to significantly reduced Ca2+ levels in VSMCs.


AMP-Activated Protein Kinases , Muscle, Smooth, Vascular , Rats , Animals , Muscle, Smooth, Vascular/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/pharmacology , AMP-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Antihypertensive Agents/pharmacology , Bradykinin/pharmacology , Bradykinin/metabolism , Cells, Cultured , Signal Transduction , Phosphorylation , Myocytes, Smooth Muscle/metabolism
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 423-428, 2023 May.
Article Zh | MEDLINE | ID: mdl-37248837

Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1ß (IL-1ß) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1ß and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1ß level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Rats , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Interleukin-1beta/metabolism , Methylene Blue/pharmacology , Phosphorylation , Rats, Sprague-Dawley , MAP Kinase Signaling System , Diabetes Mellitus, Experimental/drug therapy , Superoxide Dismutase/metabolism
...